Learning Matching Score Dependencies for Classifier Combination

نویسندگان

  • Sergey Tulyakov
  • Venu Govindaraju
چکیده

The integration of recognition algorithms into a single document processing system might involve different available modules suitable for a single task. For example, we might possess few character or word recognition algorithms which all can be used in the system. One possible approach is to test these algorithms and to choose the one with the best performance. But practice shows that better approach is to try to use all available algorithms and to combine their outputs in order to achieve a better performance than any single algorithm. The combination problem consists in learning the behavior of given algorithms and deriving best possible combination function. We assume that both the combined algorithms and the result of combination are classifiers. Thus a finite number of classes are distinguished in the problem, and the task is to find a class, which corresponds most to the input. As examples, classes might be a character set, a word lexicon, a person list, etc. Usually classifiers output the numeric matching scores corresponding to each class, and we will assume that these scores are available for combination. The combination algorithm is a function producing a final combined score for each class, and the final classifier selects class with the best combined score. The purpose of this chapter is to investigate the different scenarios of combining classifiers, to show the difficulties in finding the optimal combination algorithms, and to present few possible approaches to combination problems. Generally, the classifier combination problem can be viewed as a construction of postprocessing classifier operating on the matching scores of combined classifiers. For many classifier combination problems, though, the number of classes or the number of classifiers and, consequently, the number of matching scores is too big, and applying generic pattern classification algorithms is difficult. Thus some scores are usually discarded from combination algorithm, or simplifying assumptions on score distributions are made and used in the combination algorithm. Though the dependency between classifiers is usually learned by the combination algorithms, the dependency between scores assigned to different classes by the same classifier is discarded. In this work we will show that accounting for score dependencies is essential for proper com

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verification of unemployment benefits’ claims using Classifier Combination method

Unemployment insurance is one of the most popular insurance types in the modern world. The Social Security Organization is responsible for checking the unemployment benefits of individuals supported by unemployment insurance. Hand-crafted evaluation of unemployment claims requires a big deal of time and money. Data mining and machine learning as two efficient tools for data analysis can assist ...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

A Systematic Framework for Combination of Biometric Matchers in Identification Systems

Combination functions typically used in biometric identification systems consider as input parameters only the matching scores related to a single person in order to derive a combined score for that person. We present a systematic framework to use all scores received by all persons as input to a single combination function when sufficient training data is available. More fundamentally, we ident...

متن کامل

Finding Non-local Dependencies: Beyond Pattern Matching

We describe an algorithm for recovering non-local dependencies in syntactic dependency structures. The patternmatching approach proposed by Johnson (2002) for a similar task for phrase structure trees is extended with machine learning techniques. The algorithm is essentially a classifier that predicts a nonlocal dependency given a connected fragment of a dependency structure and a set of struct...

متن کامل

Combining Biometric Scores in Identification Systems

Combination approaches in biometric identification systems usually consider only the matching scores related to a single person in order to derive a combined score for that person. We present the use of all scores received by all persons and explore the advantages of such an approach when enough training data is available. More fundamentally, we identify four types of classifier combinations de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008